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SUMMARY 

Crystalline particles that have needle or plate shapes can be approximated by long or 
shallow cylinders. By making such an approximation the cube root equation may be 
solved for non-isometric shapes and the effect of the degree of isometricity on the length 
of time the cube root dissolution equation will hold has been derived. A more exacting 
method of plotting is presented allowing calculation of the intrinsic dissolution rate 
constant from the slope of a plot of a reduced time plotted versus actual time. 

-. 

INTRODUCTION 

A substantial body of literature has been devoted in the past to dissolution of solids 
and this area of research and technology is, of course, of importance, since in certain 
domains of solubility and formulation characteristics, dissolution is the rate determining 
step in absorption of drugs (Lippold, 1977). 

For dissolution of solids the so-called cube root law: 

melt3 - m1j3 = Kt (1) 

is frequently quoted, and often applies for substantial, if not the entire range of a dis- 
solution situation for a powder dissolving in a liquid. m. is here the mass originally, m is 
the mass remaining undissolve! at time t, and K is a cube root dissolution rate constant. 
The derivation of this equation will be demonstrated at a later point, but it should be 
emphasized that the assumption made in the derivation is the conventional assumptions 
in diffusion controlled dissolution, viz. constancy of diffusion layer thickness, isotropic- 
ity, independence of the solubility with regard to particle size, and smooth (geometric) 
surface areas. In addition the following specific assumptions are made: that sink condi- 
tions apply, that the powder is monodisperse and that the particles are isometric. Exten- 
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sion of the applicability into non-sink conditions have been made (Pate1 and Carstensen, 
1975; Pothisiri and Carstensen, 1973), and extension of the applicability into polydis- 
perse powder populations have also been successful (Carstensen and Musa, 1972; Brooke, 
1973; Carstensen and Patel, 1975). The treatments to folloti will assume that popula- 
tions are monodisperse since, as just mentioned, applicability into the more realistic pcw- 
der populations are assured. 

For convenience one usually. denotes the size by a length parameter of the particle, 
e.g. r, the radius, if it is assumed to be spherical, or the side of a cube if it is assumed to 
be cubical. The assumption of isometry is one which has not been dealt with in great 
detail in the past. Isomerry is defined as ‘length’ independence of the shape factor, a, 
which is defined as: 

a is here the area of the individual particle and v is the volume of the individual particle. 
In the case of the total area of a particle population of N particles, the total area will be 
denoted A (=Na) and the total volume will be denoted V (=Nv). It is noted that for a 
sphere ar = n 1’3 62’3 and for a cube it equals 6, so that these two shapes are isometric. In 
contrast a c$nder is only isometric if its diameter, j, equals its height, h. The exact dis- 
solution profiles of particular crystal shapes have been derived by Pedersen and Brown 
(1976 and 1977), but a broader treatment would seem to be of advantage for the explan- 
ation of why the cube root equation applies in so rnarzy cases for particle shapes which 
are not isometric. The article to follow presents such a broader (but at the same time 
approximate) approach:h, and the postulated views are substantiated by experimental find- 
ings. 

MATERIALS AND METHODS 

Tablets were made of oxalic acid dihydrate at 3000 kg force on a hydraulic press. The 
dimensions of the tablets were: height (thickness) 0.40 cm and diameter 1 .I0 cm. In one 
se; of experiments 3 tablets were placed in the basket of a U.S.P. dissolution apparatus, 
z.nd 900 ml of 0.1 N HCl were useid at 25°C to conduct the dissolution experiment. The 
amount of material dissolved at time t was obtained by stopping and removing the basket 
and assaying an aliquot 0.f the liquid after this had been further mixed for 2 min with a 
propeller mixer. In this fashion concentration gradient error as described by Carstensen et 
al. (1977) was avoided. The assay methology was as described by Carstensen and Pate1 
(1975). The experiment was repeated for various time points, t. The same experiment 
was then carried out by placing the tablets directly outside the basket, i.e. under slightly 
different hydrodynamic conditions. 

RESULTS AND DISCUSSION 

Results of the dissolution tests are plotted according to Eqn. 1 in Fig. 1. It is noted 
that the cube root law is adhered to for the initial period, up to a value of -A(M”3) of 3, 
where M denotes total mass undissolved (i.e. M = N m). Since Me is 1500 mg, a value of 
-A(M”3) of 3 denotes about 50% of the material is dissolved, Irence Eqn. 1 is adhered to 
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Fig. 1. Cube root plotting of dissolution of cylinders of oxalic 
height under two different hydrodynamic conditions. 

acid, 1.1 cm in diameter and 0.4 cm in 

through a substantial part of the entire dissolution. The dimensions of the tab!et (cylin- 
der) used is such that it is far from rendering it isometric and it is used here to exemplify 
the effect of non-isometry on the dissolution equations. 

The reason a cylinder is used in the following is that it approximates crystal shapes. 
which are most commonly either ‘needles’ or ‘plates’. If the initial diameter, jc, is larger 
than the height, ha, then the shape will approximate that of a plate, ,and in this case use 
is made of the ratio 

b = h/ho 60 > ho) (3) 

In the case of a needle, this may be approximated by a cylindrer where ho > je, and in 
this case use is made of the ratio 

e = b/h (ho >jd [4) 

The derivations to follow will be carried out for jO > he, but entirely parallel treatment 
for ha > j, leads to identical equations where b is simply permuted with e. It should be 
noted too, that shapes that are neither needles or plates are covered in the treatment by 
h,-,~je~ 1. 

The derivation of Eqn. 1 for j, > he can be carried out in a more general form than 
what is usually done, by utilizing Eqn. 2. The general diffusionally controlled dissolution 
equation for a particle with solubility S and intrinsic dissolution rate constant k is given 
by: 

clm/dt = -k a S (5) 

when sink conditions apply. If the density of the material is P then m = P v, i.e. 

dm/dt = P dvldt (6) 



The area of the particle is given by: 

a = rrjh t j2/2 

and introducing Eqns. 6 and 7 into Eqn. 5 then gives 

dv/dt = -K n(jh + b2/2]) 

where 

K=kS/p 

v is a function of h and j, i.e. 

dy=d”dj,edh 
dt dj dt dh dt 

The equation for the volume is 

v = nj*h/4 

When Eqn. 10 is inserted in Eqn. 9 the following equation ensues: 

$ = (rrjh/2) 2 t (rrj*/4) $ 

Combining Eqns. 11 and 8 and dividing through by nj*h then gives: 

K K ldj ldh --_--=_-_t---_ 
j 2h 2j dt 4h dt 

Separation of variables then gives: 

dj/dt = -2K 

dh/dt = -2K 

Introducing now the ‘reduced time’, u, given by 

u = ZKt/(h,,) 

Eqns. 13 and 14 may be written: 

j, - j = ho - h=2Kt=uh, 

(7) 

(8) 

(8 ? 

(9) 

(10) 

(11) 

02) 

(13) 

(14) 

(15) 

(16) 

It is noted that h = 0 impJies u = 1, so that the domain of u is [OJ 11. At time t the frac- 
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tion of material yet undissolved, f. is given by: 

(17) 

f, of course, equals m/mO, M/Me and V/V0 as well. Eqn. 17 is a cubic equation with one 
real and two imaginary roots, and since, in a dissolution test, f can be calculated at any 
time, u can be found as a real root of Eqn. 17 at that f-value. 

The data from Fig. 1 have been plotted according to Eqn. 17 in Fig. 2. Linearity 
through the entire range is apparent, i.e. Eqn. 15 is obeyed and the slope of the line is 
given by 

Slope = 2K/ho = 2kS/(pho) (18) 

Since all quantities with the exception of k are known, this latter can be calculated Fig. 
2 stipports the assumption made, so that it is rational to proceed to investigate the change 
of the shape factor with time. The area and vdume of the cylinder as a function of u are 
obtained via Eqns. 7, 10 and 16 and are: 

a = n(j, - uh,-,)(h,, - uht,) + Mjo - t1h~)~/2 09) 

v = n(jo - uho)*(ho - uho)/4 (20) 

Eqns. 2,19 and 20 then give the expression for the shape factor 

n42” =av-mU3-_ 
0 

(jo - uhoXhn - uho) 
1 rr (j, - uhe)4”(h,, - uhcJ2” 

n4m 
0 

Cjl3 - r&r)* 
2 n (jo - uho)“j(ho - UhlP 

=3.69[;e]m +(Er”) 

+ 

(21) 

The shape factor at a particular time, t’, averages 

a’ = $ 

One may introduce u via Eqn. 15. It should ne noted that for the limits: 

t=O+u=O 

and 

t = t’ + u = u’ = (2K/ho)t’ 

(22) 

(23) 

(24) 
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Fig. 2. Plotting of the data in Fig. 1 via Eyn. 15. 

and also that 

(1ft’)dt = (1 = u’)du 

so that Eqn. 22 may be written: 

(2% 

cx’ can then be found for any value of’t’: u’ or f. 
ar’ has been found by graphical integrG?ion as a function of u for various values of b, 

and these cmves are shown in Fig. 3. ir is noted that for b = 1, cy is time independent, i.e. 
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Fig. 3. The shape factor as a function of reduced time for venous diameter to height ratios. 



I I I I 
20 40 60 80 

PERCENT, P 

Fig. 4. The shape factor as a function of percent of oxalic acid dissolved for oxalic acid cylinder, 1.1 
cm in diameter and 0.4 cm high. 

the cylinder is isometric. u can be converted to fraction dissolved via Eqn. 7 and (Y then 
plotted versus f, or the percent, p, dissolved (i.e. p = 1OOfj. Such a graph is shown for the 
cylinder in question, i.e. where je = 1.1 andh0=0.4inFig.4.1nthiscnseb=1.1/0.4= 
2.75 so that cy = 6.25, and in this case Eqn. 1 holds up to 50% dissolved. At this point, as 
shown in Fig. 4, 01 has risen to 6.55, so that an increase in a of 5% does not cause an 
experimentally detectable deviation from linearity of the cube root plot. Of course, bet- 
ter analytical precision might alter this figure, but in general, in dissolution work, preci- 
sions better than titrimetric are not encountered. In the following it shall be assumed that 
a change in a! of 5% will not cause deviation from linearity of a cube root plot. The per- 
cent, L, at which the deviation from the original a-value is indeed 5% has been computed 
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Fig. 5. The critical pcrwnt, L, as a function of height to diameter 
or diameter to height ratio (b) for plate-shaped crystals. 

ratio (e) for needle-shaped crystals 



from Fig. 3, and the value of L as a furtction of b is plotted in Fig. 5. The value of L as a 
function of e has been computed in exactly similar fashion and is shown in this figure as 
well. This graph shows how far one may proceed in dissolution without expected devia- 
tion of linearity of a cube root plot for a needle (e-curve) and plate (b-curve). The graphs 
shows that for particles which are not too far removed from very elot~gated or very flat, 
the disslohttion follows Eqn. 1 for substantial parts of the dissolution process. This is 
comforting, since many of the basic equations in pharmacy rest on the validity of Eqn. 1, 
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