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SUMMARY

Crystalline particles that have needle or plate shapes can be approximated by long or
shallow cylinders. By making such an approximation the cube root equation may be
solved for non-isometric shapes and the effect of the degree of isometricity on the length
of time the cube root dissolution equation will hold has been derived. A more exacting
method of plotting is presented allowing calculation of the intrinsic dissolution rate
constant from the slope of a plot of a reduced time plotted versus actual time.

INTRODUCTION

A substantial body of literature has been devoted in the past to dissolution of solids
and this area of research and technology is, of course, of importance, since in certain
domains of solubility and formulation characteristics, dissolution is the rate determining
step in absorption of drugs (Lippold, 1977).

For dissolution of solids the so-called cube root law:

me!/® —m!/3 = Kt (1)

is frequently quoted, and often applies for substantial, if not the entire range of a dis-
solution situation for a powder dissolving in a liquid. mg is here the mass originally, m is
the mass remaining undissolve ! at time t, and K is a cube root dissolution rate constant.
The derivation of this equation will be demonstrated at a later poiut, but it should be
emphasized that the assumption made in the derivation is the conventional assumptions
in diffusion controlled dissolution, viz. constancy of diffusion layer thickness, isotropic-
ity, independence of the solubility with regard to particle size, and smooth (geometric)
surface areas. In addition the following specific assumptions are made: that sink condi-
tions apply, that the powder is monodisperse and that the particles are isometric. Exten-
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sion of the applicability into non-sink conditions have been made (Patel and Carstensen,
1975; Pothisiri and Carstensen, 1973), and extension of the applicability into polydis-
perse powder populations have also been successful (Carstensen and Musa, 1972; Brooke,
1973; Carstensen and Patel, 1975). The treatments to follow will assume that popula-
tions are monodisperse since, as just mentioned, applicability into the more realistic pcw-
der populations are assured.

For convenience one usually denotes the size by a length parameter of the particle,
e.g. r, the radius, if it is assumed to be spherical, or the side of a cube if it is assumed to
be cubical. The assumption of isometry is one which has not been dealt with in great
detail in the past. Isomeiry is defined as ‘length’ independence of the shape factor, a,
which is defined as:

a=av? (2)
a i3 here the area of the individual particle and v is the volume of the individual particle.
In the case of the total area of a particle population of N particles, the total area will be
denoted A (=Na) and the totaf volume will be denoted V (=Nv). It is noted that for a
sphere a = 713 623 and for a cube it equals 6, so that these two shapes are isometric. In
contrast a ¢vlinder is only isometric if its diameter, j, equals its height, h. The exact dis-
solution profiles of particular crystal shapes have been derived by Pedersen and Brown
(1976 and 1977), but a broader treatment would seem to be of advantage for the explan-
ation of why the cube root equation applies in so many cases for particle shapes which
are not isometric. The article to follow presents such a broader (but at the same time
approximate) approzch, and the postulated views are substantiated by experimental find-
ings.

MATERIALS AND METHODS

Tablets were made of oxalic acid dihydrate at 3000 kg force on a hydraulic press. The
dimensions of the tablets were: height (thickness) 0.40 cm and diameter 1.10 ¢cm. In one
se: of experiments 3 tablets were placed in the basket of a U.S.P. dissolution apparatus,
znd 900 ml of 0.1 N HCl were used at 25°C to conduct the dissolution experiment. The
amount of material dissolved at time t was obtained by stopping and removing the basket
and assaying an aliquot of the liquid after this had been further mixed for 2 min with a
propeller mixer. In this fashion concentration gradient error as described by Carstensen et
al. (1977) was avoided. The assay methology was as described by Carstensen and Patel
(1975). The cxperiment was repeated for various time points, t. The same experiment
was then carried out by placing the tablets directly outside the basket, i.e. under slightly
different hydrodynamic conditions.

RESULTS AND DISCUSSION

Results of the dissolution tests are plotted according to Eqn. 1 in Fig. 1. It is noted
that the cube root law is adhered to for the initial period, up to a value of —~A(M!’?) of 3,
where M denotes total mass undissolved (i.e. M = N m). Since M, is 1500 mg, a value of
—AM'"3) of 3 denotes about 50% of the material is dissolved, iience Eqn. 1 is adhered to
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Fig. 1. Cube root plotting of dissolution of cylinders of oxalic acid, 1.1 cm in diameter and 0.4 cm in
height under two different hydrodynamic conditions.

through a substantial part of the entire dissolution. The dimensions of the tablet (cylin-
der) used is such that it is far from rendering it isometric and it is used here to exemplify
the effect of non-isometry on the dissolution equations.

The reason a cylinder is used in the following is that it approximates crystal shapes,
which are most commonly either ‘needles’ or ‘plates’. If the initial diameter, jo, is larger
than the height, hg, then the shape will approximate that of a plate, and in this case use
is made of the ratio

b =jo/ho (io > ho) (3)

In the case of a needle, this may be approximated by a cylinder where hg > jo, and in
this case use is made of the ratio

e = ho/jo (ho > jo) (4)

The derivations to follow will be car.ied out for jo > hg, but entirely parallel treatment
for ho > jo leads to identical equations where b is simply permuted with e. It should be
noted too, that shapes that are neither needles or plates are covered in the treatment by
ho~jo~ 1.

The derivation of Eqn. 1 for jo > hg can be carried out in a more general form than
what is usually done, by utilizing Eqn. 2. The general diffusionally controlled dissolution
equation for a particle with solubility S and intrinsic dissolution rate constant k is given
by:

dm/dt=-ka$ (5)
when sink conditions apply. If the density of the material is p thenm=p v, i..

dm/dt = p dv/dt (6)
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The area of the particle is given by:

a= mjh + 7j%/2

and introducing Eqgns. 6 and 7 into Eqn. 5 then gives
dv/dt = —K =a(ih + [j%/2])

where

K =kS/p

vis a function of h and j, ie.

dv _dvdj dvdh

dt djdt dh dt
The equation for the volume is
v = 7j*h/4

When Eqgn. 10 is inserted in Eqn. 9 the following equation ensues:

dv_ d_ - 5, dh
T =@in/2) 2+ () 3

Combining Eqns. 11 and 8 and dividing through by 7jh then gives:

K K_1dj_1dh

Separation of variables then gives:

dj/dt=-2K

dh/dt=-2K

Introducing now the ‘reduced time’, u, given by
u = 2Kt/(ho)

Eqns. 13 and 14 may be written:

jo—j=he —h=2Kt=uh,

(M

®

®

®

(10)

an

(12)

(13)
(14)

(15)

(16)

It is noted that h = 0 implies u = 1, so that the domain of u is [011]. At time t the frac-
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tion of material yet undissolved, f, is given by:

v ith =(jo—uho)*(ho—uho)=(,_B)’-(l_u)
b

f=—=

vo Jjotho jo*ho

(17)

f, of course, equals m/mg, M/M, and V/V, as well. Eqn. 17 is a cubic equation with one
real and two imaginary roots, and since, in a dissolution test, f can be calculated at any
time, u can be found as a real root of Eqn. 17 at that f-value.

The data from Fig. 1 have been plotted according to Eqn. 17 in Fig. 2. Linearity
through the entire range is apparent, i.e. Eqn. 15 is obeyed and the slope of the line is

given by
Slope = 2K/hg = 2kS/(phe) (18)

Since all quantities with the exception of k are known, this latter can be calculated Fig.
2 supports the assumption made, so that it is rational to proceed tc investigate the change
of the shape factor with time. The area and volume of the cylinder as a function of u are
obtained via Eqns. 7, 10 and 16 and are:

a=m(jo — uhg)(ho — uhe) + 7(ip — uhg)?/2 (19)
v=(jo — uho)*(ho — uho)/4 (20)

Eqns. 2, 19 and 20 then give the expression for the shape factor

-2 E(i)m (jo — uho)(ho — uhy) +
1 (jo — uhe)*?(ho — uhp)*?

T
Jo (jo — uho)?
2\n/  (jo — uhg)*(ho — uhg)*?

ol (=

The shape factor at a particular time, t', averages

=av

tO
«=3 [ o) dt (22)
One may introduce u via Eqn. 15. It should ne noted that for the limits:
t=0->u=0 (23)
and

t=t'>u=u'=(2K/ho)t' (24)
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Fig. 2. Plotting of the data in Fig. 1 via Eqn. 15.

and also that
(1/tYdt=(1=u")du (25)

so that Eqn. 22 may be written:

o= f a(w) du 26)

o' can then be found for any value of 1", u’ or f.
o' has been found by graphical integration as a function of u for various values of b,
and these curves are shown in Fig. 3. It is noted that for b= 1, w is time independent, i.e.

b=l0  b=8 b=8 =4
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Fig. 3. The shape factor as a function of reduced time for various diameter to height ratios.
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Fig. 4. The shape factor as a function of percent of oxalic acid dissolved for oxalic acid cylinder, 1.1
cm in diameter and 0.4 cm high.

the cylinder is isometric. u can be converted to fraction dissolved via Eqn. 7 and a then
plotted versus f, or the percent, p, dissolved (i.e. p = 100f). Such a graph is shown for the
cylinder in question, i.e. where jo = 1.1 and ho = 0.4 in Fig. 4. In thiscase b = 1.1/0.4 =
2.75 so that & = 6.25, and in this case Eqn. 1 holds up to 50% dissolved. At this point, as
shown in Fig. 4, a has risen to 6.55, so that an increase in « of 5% does not cause an
experimentally detectable deviation from linearity of the cube root plot. Of course, bet-
ter analytical precision might alter this figure, but in general, in dissolution work, preci-
sions better than titrimetric are not encountered. In the following it shall be assumed that
a change in a of 5% will not cause deviation from linearity of a cube root piot. The per-
cert, L, at which the deviation from the original a-value is indeed 5% has been computed
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Fig. 5. The critical percent, L, as a function of height to diameter ratio () for needle-shaped crystals
or diameter to height ratio (b) for plate-shaped crystals.
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from Fig. 3, and the value of L as a fuinction of b is plotted in Fig. 5. The value of Las a
function of e has been comiputed in exactly similar fashion and is shown in this figure as
well. This graph shows how far one may proceed in dissolution without expected devia-
tion of linearity of a cube root plot for a needle (e-curve) and plate (b-curve). The graphs
shews that for particles which are not too far removed from very elongated or very flat,
the dissolution follows Eqn. 1 for substantial parts of the dissolution process. This is
comforting, since many of the basic equations in pharmacy rest on the validity of Eqn. 1.
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